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Personnel Trajectory Extraction From Port-Like
Videos Under Varied Rainy Interferences
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Abstract— Large-scale deployed cameras in the automated
container terminal (ACT) area helps on-site staff better identify
unexpected yet emergency events by monitoring port personnel
trajectories. Rainy weather is a common yet typical problem
which may significantly deteriorate trajectory extraction perfor-
mance. To tackle the problem, the study proposes an ensemble
framework to extract personnel trajectory from port-like surveil-
lance videos under varied rainy weather scenarios. Firstly, the
proposed framework learns fine-grained personnel features with
the help of the object query and transformer encoder-decoder
module from the input port-like image sequences, and thus
obtains port personnel locations from the input low-visibility
images. Secondly, the personnel positions are further associated
in a frame-by-frame manner with the help of neighboring kine-
matic movement information and feature information. Finally,
a memory mechanism is introduced in the proposed frame-
work to suppress personnel trajectory discontinuity outlier.
In that manner, we can obtain accurate yet consistent personnel
trajectories, and each person is assigned with a unique ID.
We verified the proposed model performance on three port-like
rainy videos involving with interferences of rain, rain streak and
fog. Experimental results show that the proposed port personnel
trajectory extraction framework can obtain satisfied performance
considering that the average multi-target accuracy (MOTA), the
average value of judging the same target (IDF1), average recall
rate (IDR) and average precision (IDP) were larger than 92%.

Index Terms— Personnel trajectory extraction, rainy interfer-
ence, ensemble transformer framework, memory mechanism,
automated container terminal.

I. INTRODUCTION

THE automated container terminal (ACT) has undergone
rapid development along with evolution of artificial

intelligence techniques [1], [2]. It is crucial to quickly and
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accurately identify personnel locations from port videos for
the purpose of early-warning emergency or abnormal events.
It is noted that rainy weather is common in real-world port
activities, which may impose negative impact on the trajectory
exploitation related tasks [3]. Port personnel trajectory extrac-
tion performance under varied rainy weather may fail to obtain
satisfactory results due to potential personnel visual feature
deterioration caused by rain (e.g., raindrops, rain streaks)
[4], [5]. Port videos captured by a camera attached with rain
drops were similar to those taken by a fisheye camera [6].
Raindrops play the role of blurry mask, which obscure the
port image sequence quality. It is also noted that rain and fog
in the rainy weather condition can significantly degrade image
quality due to that rain and fog-related pixels may contaminate
port person features [7], [8], [9].

Many focuses have been paid to explore kinematic
spatial-temporal data (trajectory, speed, etc.) from varied
surveillance videos captured under good weather conditions.
Chen et al., extracted vehicle speed data from drone videos
with an ensemble detection framework [10]. Sousa et al.,
conducted a comprehensive review of state-of-art methods
about vehicular trajectory extraction and representation [11].
It is found that object trajectories can be successfully
extracted from port video streams while weather conditions are
good [12], [13]. Object detection with segmentation models
is also conducted to detect unknown targets in images. For
instance, K. Sirohi et al., propose a novel top-down evidential
panoptic segmentation network to identify objects via the
help of panoptic fusion module [14]. Li et al., implemented
unfamiliar object detection task by integrating region proposal
network and the radial basis function network [15].

Previous studies demonstrate that imaging spatial-temporal
data can be obtained against adverse weather interference via
support of multi-sensor data fusion mechanism [16], [17].
Bai et al., obtained high-fidelity target motion information
by fusing radar and camera data using Gaussian mixture
model [18]. Liu et al., introduced a two-layer feature
model to exploit discriminant features from thermal infrared
images [19]. The main weakness is that multi-sensor data
fusion-based models may need to implement coordinate regis-
tration to map reference coordinates for different data sources
into same coordinate system [20]. Rain, magnetic interference
from yard crane and corrosive environmental condition may
reduce the above-mentioned model performance in the port
personal trajectory extraction task [21], [22].

To address the issue, we propose a novel end-to-end deep
learning framework for extracting port personnel trajectories.
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This framework consists of personnel detection from port
videos and personnel ID association. The primary academic
contributions of the study can be summarized as follows:

• we propose a novel ensemble framework to extract port
personnel trajectories under rainy weather interference.
We formulate the port personnel detection problem into
an ensemble prediction task, which mitigates the dis-
advantages of non-maximum suppression, anchor link
misconnection, etc.

• we introduce a memory module into the straightforward
online tracking model with a deep association metric
module to suppress rain and occlusion imaging interfer-
ences in port videos.

• we verified that the proposed framework achieved
satisfactory results in port-like videos under varied
rainy interferences. (i.e., raindrop, rain streak, hybrid
interference of rain and fog).

II. RELATED WORKS

Trajectory extraction has become a hot topic in the trans-
portation community along with the artificial intelligence
technique development. A bunch of studies have been con-
ducted to exploit trajectories from varied data sources. In this
section, we focus on reviewing the state-of-the-art methods
for trajectory extraction with deep learning and multi-sensor
approaches.

A. Trajectory Extraction From Video Data

Multi-object tracking algorithms have been proposed for
good weather conditions [11], [12]. It is noted that previ-
ous trajectory extraction related studies are conducted under
good weather conditions [7]. Some scholars try to extract
trajectory from low visibility videos with image restoration
and enhancement. M. Hassaballah et al., utilized a visibility
enhancement scheme to preprocess video images, and obtained
vehicle trajectory by proposing a multi-scale deep convolution
tracking method [23]. Quan et al., proposed a complementary
cascaded network framework to remove rain interference in
video data for autonomous driving scenarios [24]. Wu et al.,
proposed a class encoder framework based on an adaptive
mixup operation and a dynamic feature enhancement module
to achieve video image defogging [21]. Similar studies can
also be found in [25].

B. Trajectory Extraction From Thermal Images

Thermal imager plays an important role in various mon-
itoring scenarios due to its insensitivity to visibility. The
thermal camera can be deployed in low visibility environments
such as nighttime and foggy conditions [26]. KRIŠTO et
al., utilized visual technology and the difference in thermal
image features to implement object detection on thermal
imaging data using you only look once (YOLOv3) model [27].
M. P. Muresan et al., developed a Siamese network to imple-
ment real-time pedestrian detection and tracking from thermal
images with the help of original edge-based descriptor and

data association method [28]. Yuan et al., proposed an effi-
cient thermal infrared target tracking method by utilizing a
spatial-temporal memory network model and an alignment
matching module to model and spatially correct information
in the infrared target tracking scenario [29].

C. Trajectory Extraction From Multiple Data Sources

Multi-sensor data fusion scheme has shown its superiority
in tackling the challenges of clutter interference, object occlu-
sion, and limited sensor deployment in complex scenes.
B. Iepure et al., proposed a novel object tracking method
with data collected from thermal sensors, optical sensors
and millimeter-wave sensors [30]. Ouyang et al., proposed
a novel SacadeFork model to accurately detect vehicle and
pedestrian under different scenarios by fusing image and
LiDAR point cloud data [31]. Some attentions are also paid to
exploit trajectory data from high-resolution satellite and radar
images [32].

In sum, the above-mentioned models can extract trajectory
in complex environments, which may fail to obtain accu-
rate personnel trajectories from port-like videos due to the
following reasons: (1) the video-based trajectory extraction
models may require image restoration procedure. It is found
that the step is computer hardware demanding, which can
be hardly deployed in the real-world port personal trajectory
extraction task; (2) thermal image quality is easily affected by
the port environment, while the image contrast may be quite
low (i.e., object resolution in the images may be too low to
be identified); (3) it was difficult to deploy multiple yet varied
sensors in port area due to port operation safety and sensor
heath status maintenance, etc. We aim to extract high-fidelity
port personnel from videos with hybrid rainy interferences
without image restoration procedure. The proposed model
accurately identifies port personnel from rainy-polluted images
through a multi-head attention mechanism, and accurately
realizes trajectory extraction.

III. PROPOSED SOLUTION

A. Framework Overview

The proposed port personnel trajectory extraction frame-
work mainly consists of personnel detection and imaging
position data association (see figure 1). Firstly, we employ the
convolution neural network (CNN) network to extract object
features from the collected port videos. We also introduce a
multi-head attention mechanism for context interaction with
the support of local and global feature. Besides, the object
query random variable is developed to introduce small biases
into the object query learning iteration procedure. The pro-
posed object query random variable integrates object feature
and position into a model to enhance port personnel extrac-
tion accuracy under adverse weather interference. Secondly,
we propose an improved DeepSort algorithm with memory
module to store (and recover) port personnel trajectory data.
The memory mechanism helps the proposed framework repair
trajectory data loss (and ID switch) like outliers by storing
historical port personnel position ID and feature information.
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Fig. 1. Schematic overview for port personnel trajectory extraction under low-visibility port environments.

B. Port Personnel Detection With Transformer Detector
Port surveillance videos collected under adverse weather

condition and complicated port area (i.e., varied imaging
interference) challenges personnel detection model perfor-
mance. We extract environmental features from port image
sequences with the help of traditional CNN neural network,
and thus obtain a new yet distinct feature map. Furthermore,
we propose an end-to-end low-visibility personnel detector
to obtain personnel ID from port surveillance videos. The
main advantage of the proposed port personnel detector is
that the model formulates the detection task into an ensemble
prediction problem.

Stage 1: Personnel detection with transformer encoder
The feature map L f obtained by the CNN is compressed

into a new feature map L0 from dimension C to dimension d
with a 1×1 convolution kernel. The feature map L0 is flattened
to obtain a d×Row × Col feature map considering that the
transformer module input is a sequence vector. The feature
map is further unfold into a one-dimensional vector (with size
Row×Col) to efficiently predict bounding boxes (Bbox). The
feature vector and encoded spatial position are concatenated as
the input to the transformer encoder to mitigate the weakness
of sequence order insensitivity. We calculate the fixed position
encoding of the two measurements with Eq. (1) and (2) to
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Fig. 2. Port personnel detection oriented multi-head attention structure via
encoder and decoder mechanism.

specify image information in both of X and Y axis. Note that
the procedure is integrated into each attention layer.

Epos(Sep,2n) = sin

(
Sep

10000
2n/dim

)
(1)

Epos(Sep,2n+1) = cos

(
Sep

10000
2n/dim

)
(2)

where Sep represents image sequence position, and dim rep-
resents the vector dimension. The 2n and 2n+1 represent the
even dimension and odd dimension in the dim, respectively.
It can be seen from the nature of the triangle function that
Sep+k can be calculated in the Sep position at each position,
and position encode in each dimension is unique from each
other.

Each encoding layer in the transformer includes a multi-
headed self-attention module and a feed-forward network
(FFN). Note that multi-headed self-attention module in our
study consists of 8 heads, which can efficiently focus on
fine-grained and important features of port personnel from
low-visibility images. The proposed multi-head attention struc-
ture is shown in figure 2. The multi-head attention module
splits the input feature vector into 8 heads (i.e., 8 feature sub-
vector). In that way, we employ self-attention mechanism on
each head to holistically exploit features at different levels
from input port image sequences. Then, the explored features
from sub-vectors are aggregated into a global feature map.

The multi-head attention assigns attention coefficients to
each head, and thus enables the selective weighting and
integration of feature information from different heads.
The operation can efficiently retrieve personal feature maps
from various locations in the port video clips. The attention

mechanism is formulated with Eq. (3), (4) and (5). In that
manner, we can obtain holistic global feature representation
with the feedforward network.

Att (m, e, r) = Sof tmax
(

m · eT
√

nk

)
r (3)

hd i = Att
(
miw

m
i , eiw

e
i , riw

r
i
)

(4)
Mhd (m, e, r) = Concat (hd1, hd2 . . . . . . hd8) wo (5)

where Att (m, e, r) represents the weighted feature vector,
m represents the weight of the query vector matrix,
e represents the weight of the key vector matrix, r represents
the weight of the value vector matrix,

√
nk represents a

scaling factor that keeps the gradient stable, nk represents the
dimension of the input. hd i represents the i-th attention head,
Mhd (m, e, r) represents weighted integration. wm

i , we
i , wr

i ,
wo are all weight matrices, T represents the transpose matrix.

Stage 2: Personnel detection of transformer decoder
Both of decoder and encoder architectures are similar to

each other, while the encoder architecture consists of an
additional multi-head attention module. The input of decoder
multi-head attention model is global feature information of
port-like regions and object query (the fine-grained features
of port personnel) output by the previous layer encoder (or
the previous layer decoder). Note that the module in the pro-
posed framework can simultaneously decode N objects. Due
to the position invariant constraint of the encoder, to ensure
the correspondence of the features of port-like personnel,
the same position encoding is added to each attention layer
in the decoder. The object query in the decoder consists of
N d-dimensional vectors, similar to the spatial position encod-
ing in the encoder, which are learned position encodings. After
being processed by the encoder, the positional embedding
carries regional features of the locations of low-visibility
personnel that each query focuses on. The object query, which
carries information about the objects in the image, is initially
unaware of the objects in the image before entering the
decoder. Therefore, it is set as a random variable. During
model training, these object queries can cover the entire image
as evenly as possible, which allows for better perception of
the global image features of port-like areas and the context
inference of personnel features.

The object query interacts with the encoder at the corre-
sponding position through self-attention and cross-attention
learning. In this process, the self-attention query distinguishes
between foreground (port-like personnel) and background tar-
gets (containers, AGVs, etc.) in each frame of the image.
Meanwhile, cross-attention allows each query to extract edge
feature information of low-visibility personnel from the image
based on their respective areas of interest. Specifically, each
query pays more attention to the content that was not previ-
ously learned from the image based on their respective areas
of interest. This allows the feature information of different
categories and the differences in different regions to inter-
act, communicate, and collaborate through the cross-attention
mechanism, aggregating the personnel feature information in
the image. Therefore, in each layer of the decoder, they
can communicate with each other and then repeat this pro-
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cess in the next layer until a consensus is reached on the
region where the features of port-like personnel appear. It is
these deviations in the object queries that allow each object
query to focus on the content of its target area, enabling
the model to better perceive and capture the global position
feature information of port-like personnel. The object queries
are transformed into output embeddings through the decoder
and then passed through a feed-forward network. They are
independently decoded into corresponding box coordinates
and class labels, resulting in N final prediction boxes (where
N = 100).

Stage 3: Ensemble prediction matching
The output embeddings from the decoder are input into a

feed-forward network (FFN). On the one hand, this leads to
in the prediction of N normalized bounding boxes of fixed
size (including center coordinates, height, and width). On the
other hand, class labels are predicted using a Softmax function.
The FFN consists of three parts: (1) a ReLU function; (2) a
3-layer MLP with a d-dimensional hidden layer and (3) a linear
layer. The process involves matching the set of N predicted
Bbox (e.g., 100) output from the feed-forward network with
the ground truth Bbox. This is done in a way that minimizes
the cost between the predicted Bbox and the ground truth
Bbox, thereby transforming it into an optimal bipartite graph
matching problem. The calculation formulas are shown in
Eq. (6) and Eq. (7). N is typically set to be larger than the
typical number of objects in the image. Therefore, an addi-
tional label φ is used to represent the detection of non-ROI
areas (i.e., background). After all the predicted personnel
Bbox and all the ground truth Bbox have been traversed,
that is, when the predicted personnel Bbox and the ground
truth Bbox have a unique match, this approach can avoid the
use of non-maximum suppression (NMS) to remove duplicate
detection boxes. Finally, a bipartite graph matching loss is
calculated for all matched Bbox.

η̂ =
arg min
ηϵσN

∑N

i
ϕmh

(
ai , âϕ(i)

)
(6)

ϕmh
(
ai , âϕ(i)

)
= −1{J } P̂η (li ) + 1{J }ϕbox

(
di , d̂η(i)

)
(7)

where ϕmh
(
ai , âϕ(i)

)
represents a pair-wise matching cost

between the calculated real ground personnel location data
ai and the personnel location data ϕ(i). ηϵσN represents the
range of matching between the predicted personnel Bbox and
the real ground personnel Bbox. ai represents the sequence
of real personnel ground data, including φ. for the i-th real
ground data ai=(li , di ), where li represents the person label.
di represents the center coordinates, width and height of
the ground truth Bbox expressed as an array of di∈[0, 1]

4.
âϕ(i) = {âi }

N
i=1 represents the sequence of Bbox predicted

by the network model as N. âϕ(i) =

(
l̂i , d̂i

)
represents the

i-th predicted Bbox size and label, where P̂η(l i ) represents
the probability of belonging to class li , and d̂η(i) represents
the size of the prediction Bbox. ϕbox represents the loss
between the predicted Bbox and the detection Bbox. The
Hungarian loss is calculated to obtain scores, categories, center
coordinates, width and height of the predicted Bbox while
the prediction Bbox is matched with ground truth counterpart.

This is essentially a linear combination of the loss of category
prediction and Bbox loss. In that way, the Hungarian loss
(ϕHn) of all pairs is calculated using Eq. (8):

ϕHn
(
ai , â

)
=

N∑
i

[−log P̂η̂(i)(l i ) + 1{J }ϕbox (di , d̂η̂(i))] (8)

where η̂ represents the optimal box match, and P̂η̂(i)(l i ) repre-
sents matching cost probability. The ϕbox (di , d̂η̂(i)) represents
the Intersection over Union (IoU) loss, and log-probability is
reduced into 10 times lower when the li equals φ. We obtain
the final detected personnel imaging position from candidate
positions by setting a confidence threshold.

C. Trajectory Association and Extraction

Stage 1: Track handling and state estimation
The personnel position in consecutive frames can be

obtained (i.e., the personnel detection Bbox) with the help
of personnel detector. We propose a port personnel tracker to
perform data association and matching procedure considering
that the detection results of each image are not linked with
each other. The improved DeepSort is introduced based on
port personnel movement status with the help of Kalman filter.
The model is initialized with personnel detection results in the
current frame. The personnel position in the port images is
formulated with Eq (9).

L =
(
x, y, γ, ξ, ẋ, ẏ, γ̇ , ξ̇

)
(9)

where x and y represent the center coordinates of the port
personnel position, aspect ratio γ , ξ is the height of the
port personnel image, (ẋ, ẏ, γ̇ , ξ̇ ) represents the velocity
corresponding to each coordinate direction; the Kalman
filter estimates the current position information based on the
historical position information, so only the spatial position
information is used.

Stage 2: Data association
In order to perform personnel location data association,

we use the weighted fusion results of the fused motion
model and appearance feature information. The motion model
predicts the speed and position information of the next frame
based on previous personnel detection, which allows better
motion state differentiation for varied people. The motion
model uses Bayesian probability theory to combine prior
knowledge with real-time observation data for state estimation.
This is achieved by predicting the velocity, acceleration, and
position information of a person in the next frame based on
the previous person detection, which enhances the distinction
between individual motion states. Besides, the similarity of
appearance feature information is used to avoid ID change
for the same person. The personnel trajectory data is further
rectified using the IOU data match mechanism.

Moreover, we employ a memory mechanism to correct the
trajectory loss outlier when the personnel match failure error
occurs twice. We use two metrics, the Mahalanobis distance
and the cosine distance, to achieve the correlation between the
person motion state and the external feature information. More
specifically, the matching between the predicted person and the
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newly detected person is accomplished by the Kalman filter,
and thus enables the association of data from the same person.
To ensure the stability and accurate correlation of motion
states, we use the Kalman filter to predict personnel imaging
positions and speed information for the following frame based
on previous detection results. Therefore, we use Mahalanobis
distance to calculate similarity of motion states, which can
further measure match level between the predicted and current
port personnel detected position. In that manner, we can
achieve minimum deviation between the predicted bounding
box (i.e., predicted position) and the detected bounding box
(i.e., detected personnel position). The formula for calculating
the Mahalanobis distance is shown in Eq. (10):

gmahdis (i, j) =
(
g j − pi

)T Q−1
i
(
g j − pi

)
(10)

where gmahdis (i, j) represents the Mahalanobis distance
between the detected value of the port personnel and the
predicted value, g j represents the detected position of the
port personnel, pi represents the predicted position of the port
personnel, Qi is the covariance matrix between detection Bbox
and track Bbox.

The Kalman filter can successfully estimate object motion
position while object velocity is a constant value. The distance
between the tracker predicted box and the detected box is large
when the object movement status shows obvious variation
(i.e., sudden acceleration or deceleration). The Mahalanobis
distance may fail to accurately measure the error. To address
the problem, we design a deep appearance feature matching
method (i.e., CNN model) to extract the appearance features
of port personnel in the images. It is found that appearance
features for same person are quite similar, and vice versa.
The cosine distance is used to calculate similarity in the
study. It is worth noting that the smaller cosine distance
indicates that the appearance features between the pedestrians
detected in the previous frame and the current frame are closer.
The calculation formula for the cosine distance is shown in
Eq. (11):

gcosdis (i, j) = min
(

1 − eT
j e(i)

k | e(i)
k ∈ Ri j

)
(11)

where gcosdis (i, j) represents the minimum cosine distance
between the position detection value and the predicted value of
the port personnel. e(i)

k represents the feature vector predicted
by the i-th port personnel preserving the features that have
been successfully tracked for k times. eT

j represents the trans-
pose of the image feature vector of port personnel detected
position. Ri j represents the set of image feature vectors of all
tracked port personnel.

After the movement state of the person has been corre-
lated by filtering the Mahalanobis distance, the appearance
features are also matched and correlated by cosine distance to
obtain the minimum appearance feature difference. The two
indicators mentioned above are weighted together to achieve
the optimal one-to-one match. The calculation formula for
the weighted integration of Mahalanobis distance and cosine
distance is shown in Eq. (12):

g (i, j) = ℓ ∗ gmahdis (i, j) + (1 − l) gcosdis (i, j) (12)

where ℓ represents the weight coefficient, which can be used
to adjust the weight of the distance between the appearance
feature and motion states, and g (i, j) represents the cascade
matching distance after weighting adjustment. Finally, the
first data association is completed by cascading the detected
position and the predicted position of the port personnel, and
the motion trajectory across the image frames is preliminarily
obtained.

For the unmatched personnel position detection value
and port personnel position prediction value, the Hungarian
algorithm based on Intersection over Union (IoU) is used for
secondary matching. The calculation formula for the IoU is
shown in Eq. (13):

I oU =
area (pd ∩ dec)
area (pd ∪ dec)

(13)

where dec represents the detection Bbox area of each frame for
port personal by the port personnel detector. pd represents the
predicted Bbox area for each frame of port personnel, thereby
completing the second data association matching.

Port personnel data samples may be unsuccessfully linked
due to person tracking loss outlier, new trajectory segmentation
generation, trajectory deletion, etc. To solve this problem,
we have set a memory storage module in DeepSort to save
this occluded and distorted stable trajectory information, which
includes the ID and feature information of each personnel. The
stored information will undergo additional data association
matching in the next frame. The port personnel trajectory data
will be updated when the data association match procedure
is conducted, and thus we can obtain holistic yet accurate
trajectory for each personnel.

IV. EXPERIMENTAL DESIGN

A. Data Description

For the purpose of model generalization, we incorporate
the COCO 2017 dataset into model training procedure,
which includes 118000 training images and 5000 validation
images [33]. Each image in the dataset is labeled with
multiple object instances, which involves over 80 different
object categories (including pedestrians, boats, cars, and other
categories). Besides, we collected three port-like videos in
our university with different visibility conditions (including
raindrop, rain streak, hybrid interference of rain and fog). The
image resolution for each collected video is 1280 × 720, and
the frame rate is 25 frames per second (fps). Each scenario
involves challenges such as small target personnel detection,
personnel image distortion and occlusion, low visibility, etc.
Video #1 mainly involves fisheye lens interference, while
Video #2 is obtained under low visibility conditions with
hybrid interferences from both rain and fog. The video #3
was collected to test model performance under rain streak
condition.

To evaluate our model performance against adverse weather,
we have collected video #4 in the night port-like scenario and
the data sample number was approximately ten-folds larger
than those of the three videos. Moreover, people in the video
also randomly walked while different people often occluded
with each other in the image sequences. The video #5 was
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Fig. 3. Feature maps for port images under different weather conditions.

TABLE I
INFORMATION OF PORT SURVEILLANCE VIDEOS

collected to further testify model performance under good
weather condition, and trajectory data samples were 1256.
Both framerate and image resolution for the video #5 were
same to those of video #1. More details for each collected
video can be found in Table I.

Details for the three videos can be found in Table I.
Note that each video is also involved with image distor-
tion and small target (i.e., personnel imaging size is small)
interferences. The proposed method is implemented with
PyTorch 1.4.0 framework and Python 3.7. The operating
system is Ubuntu 20.04 OS, and the CPU is Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz. The GPU used for the experi-
mental platform is Quadro RTX 5000. Figure 3 demonstrates
feature maps for the collected videos under varied interfer-
ences. Figure 3(a) shows the port environmental feature map
under good weather conditions, while the figure 3(b), (c)
and (d) show the feature maps of raindrop, hybrid interference
of rain and fog, rain streak weather condition.

B. Evaluation Indicators

We manually obtain ground truth port personnel imaging
trajectories from three videos for the purpose of model per-
formance comparison. Each person in a video clip is assigned
with a unique ID for the purpose of trajectory extraction.
We employ six indicators to verify model performance, which

include multiple-object tracking accuracy (MOTA), identifica-
tion of the same personnel ID in each Bbox (IDF1), value of
judging the same target identification recall of personnel ID in
each Bbox frame (IDR), identification precision of personnel
ID in each Bbox frame (IDP), ID switch (ID_SW) and fps. The
MOTA represents the model tracking accuracy; and ID_SW
demonstrates port personnel tracking ID variation frequency.
The formulas for calculating MOTA and IDF1 are shown in
Eq. (14) and Eq. (15), respectively. The IDP represents the
identification accuracy (see Eq. (16)) and IDR represents the
identification recall rate of the ID for the personnel in the port
images (see Eq. (17)). Fps represents model computational
each frame average time consumption (see Eq. (18)). It is
considered that the extracted port personnel trajectory is closer
to the ground truth counterpart with larger MOTA, IDF1, IDR,
IDP, fps and smaller ID_SW.

M OT A = 1 −
f n + f p + ω

t
(14)

I DF1 =
2idtp

2idtp + id f p + id f n
(15)

I D P =
idtp

idtp + id f p
(16)

I DR =
idtp

idtp + id f n
(17)

f ps =

∑ f r
n=1

1
CT f r

f r
(18)

where f n represents miss-tracking ID number, and f p rep-
resents ID wrongly-tracking number. The ω represents the
port personnel ID switch number, and t represents ground
truth ID for the port personnel. The idtp (id f p) indicates
the number that predicted port personnel ID well-matches
(wrongly-matches) with ground truth ID. The id f n represents
the number of times the tracking algorithm failed to assign
the correct ID. The CT f r demonstrates time cost for each
individual frame, and f r is frame number for each collected
port video.
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Fig. 4. Typical port personnel detection errors for different models under different rainy interferences.

V. EXPERIMENTAL RESULTS

A. Experimental Results About Port Personnel Detection

Figure 4(a) indicated that miss-detection can be easily found
in port personnel detection under interferences of image dis-
tortion, small object imaging size, etc. As shown in figure 4(b)
and (c), low visibility interference triggers false detection (i.e.,
non-personnel target was wrongly detected as people) and
redundancy detection (one person was assigned with multiple
Bbox). The port personnel pixels are very close to backgrounds
under complex port area environment interference (i.e., low
visibility of image features and details) as shown in figure 4(d).

Both of figure 4(a) and 4(b) indicated that Yolov5 and
Mask_rcnn models experienced miss and false detection under
image distortion, fisheye and small target interferes. The main
reason is that people imaging resolution in the video is too
low and personnel features can be hardly identified. Rainy
interference causes feature confusion for people and objects
in the collected port videos, and thus the detector may fail
to identify people from the port videos. The Mask_Rcnn
model failed to accurately obtain effective candidate boxes
while the target port personnel was occluded by rain due to
the fisheye effect. Moreover, the Mask_Rcnn model failed to
infer global contextual feature information from local image
features, which made the model difficult to recognize port
personnel against the personnel reflection appeared in the
ground water.

The Yolov5 model was also misled by the port personnel
projections in the ground water under rainy weather condi-
tions. In frame #2 of the video #3 (see figure 4(c)), one person
was wrongly detected into two Bbox under rainy weather
interferences by the Mask_Rcnn and Fast_Rcnn models. It can
be infereed that the Mask_Rcnn and Fast_Rcnn models failed
to exploit fundamental feature differences among people and
objects in the port videos. Figure 4(d) indicated that both of
the Mask_Rcnn and Fast_Rcnn experienced Bbox fluctuations
due to difficulty in identifying fine-grain features in the hybrid

interference of rain and fog and rain streaks. Thus, the detected
Bbox (i.e., detected port personnel positions) may fail to
well-match with ground truth position.

The object query vector in our proposed farmwork can
effectively capture the feature differences among different
objects in the port images. The 8-head attention mechanism
of the transformer network structure enhanced our framework
capabilities of global and local contextual reasoning (see
figure 5). In that way, the multi-head attention mechanism
can select and set appropriate weight for each head to
obtain optimal personnel position identification performance.
More specifically, the 8-head attention mechanism helps the
model match each predicted Bbox with detected personnel
Bbox in one-to-one manner. In that way, trajectory loss and
redundance related outliers can be efficiently suppressed by
our framework.

B. Experimental Results About Port Personnel Trajectory
Extraction

We have further evaluated model performance by extract-
ing port personnel trajectories on the three collected port
videos. Our proposed framework was abbreviated as TDM for
the purpose of better readability. For the purpose of model
performance comparison, we extracted trajectories utilizing
Yolov5+DeepSort (YD), Faster_Rcnn+ByteTrack (FRB) and
Mask_Rcnn+DeepSort (MRD) to further evaluate model per-
formance. It is worth noting that we visualize the extracted
trajectories through point object tracking manner. Note that
each personnel in the port video moved with different status,
whilst group target tracking based models cannot be intro-
duced straightforwardly to fulfill multiple people trajectory
tracking task.

Overall, port personnel trajectories obtained by various
models were close to the ground truth counterparts (as shown
in figure 6). The yellow (GT 1) and blue (GT 2) bounding
boxes demonstrate ground truth personnel trajectories.
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Fig. 5. Multi-head attention mechanism obtained personnel feature maps for low-visibility port images.

Fig. 6. Port personnel trajectory extraction performance comparison for video #1.

Outliers can be easily observed when zooming out personnel
trajectory details. Note that port personnel trajectory experi-
enced outliers (e.g., trajectory association error in neighboring
images) while trajectory color changed for same people. For
instance, personnel trajectory may be missing for a long time
due to raindrop and video imaging distortion interferences.
Personnel imaging occlusion may lead to ID switch outlier.

The trajectory data obtained by our proposed TDM model
was quite close to those of the ground truth counterparts. The

trajectory data outliers (such as trajectory loss, trajectory fluc-
tuation trajectory redundancy and ID switch) were successfully
corrected by our model. The purple box in the figure represents
the abnormal trajectory points (i.e., trajectory loss) due to the
fisheye effect caused by raindrop. The green box represents
trajectory redundancy due to object feature miss (e.g., object
occlusion) in the collected port images. The red box and
light-cyan box represent trajectory fluctuation and ID switch
problem. Meanwhile, the trajectories extracted by different
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Fig. 7. Port personnel trajectory extraction performance comparison for video #2 and #3.

TABLE II
PERFORMANCE STATISTICS OF HUMAN TRAJECTORY EXTRACTION IN PORT ENVIRONMENT UNDER DIFFERENT VISIBILITY

models are represented in a gray bottom box in figure 6.
However, the TDM framework proposed in the study did not
experience abnormal trajectory points or data loss errors.

Figure 7 demonstrated trajectory extraction performance for
video #2 and #3 for different models. It can be observed
that varied models showed similar performance compared to
those in video #1. Table II demonstrated trajectory extraction
performance for three videos in a quantitative manner. The
MOTA indicator for our proposed TDM model was 91.47%
for video #1, which was approximately 10% higher than those
of the YD, FRB and MRD models. The indicators of IDF1,
IDR IDP and ID_SW, obtained by our proposed model, for
video #1 were 95.68%, 94.38%, 97.01% and 0. It can be
found that proposed model outperformed the counterparts for
video #1 in terms of MOTA, IDF1. The average fps for the YD

model was 22.43, which was approximately two times larger
than that of the TDM model. Because YOLOv5 is a one-stage
detector with fast detection speed. However, its lower detection
accuracy may result in unassociated personnel data, further
reducing the time and cost of model inference.

We have further testified our proposed TDM model perfor-
mance on the port-like video captured in the evening. The
visibility condition in video #4 was low, and four people
walked on-site. The ground truth trajectory for each person
was labeled GT1, GT2, GT3, GT4 as shown in figure 8(a).
The trajectory distributions for the ground truth data demon-
strated that the person #1 walked back and forth. In that
way, trajectory loss was easily triggered (i.e., ID switch),
which significantly challenged model robustness. We evaluated
port personnel trajectory extraction performance for different
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Fig. 8. Trajectory extraction performance for different models of videos #4 and #5.

TABLE III
ABLATION EXPERIMENT RESULTS WITH DEEP ASSOCIATION METRIC MODULE AND MEMORY MODULE

models with MOTA, IDR, I DF1, IDP and ID_SW indicators
(as shown in table II).

The previous four metrics of our proposed TDM model
in video #4 were 99.44%, 99.60%, 99.72% and 99.84%
respectively, which are 11.58%, 25.83%, 26.58% and 25.05%
larger than those of the FRB mode. Moreover, our proposed
model suppressed the ID switch weakness due to that ID_SW
value was 0. In comparison, the remaining YD, FRB, and
MRD models for the ID_SW indicator were 13, 4, and 11,
respectively. From the perspective of time consumption, the
YD model is a one stage trajectory extraction framework, and
the frame rate of the YD model is approximately 22.39. Our
collected port-like videos were public-accessible on the web-
site https://github.com/xinqiangchentraffic/TDM_demo_video.

From perspective of five statistical indicators, our proposed
model obtained better performance compared to those of video
#1, #2, #3 and #4. Table II indicated that MOTA, I DF1,
IDR, IDP and ID_SW obtained by the proposed model (for
video #5) were quite close to 100%. Figure 8(b) showed the
ground truth and TDM model obtained trajectories, which have
confirmed that our proposed framework can obtain satisfactory
performance under good visibility condition. Thus, it can
be concluded that our proposed framework can successfully
extract port personnel trajectory under both adverse and good
visibility weather conditions.

We considered that our model obtained better performance
compared to the YD model because the accuracy of TDM
model trajectory extraction was higher. The time cost for
the TDM model was 11.91, which was about two-fold larger
than those of the FRB and MRD modes. Statistical indicator
distributions for both of video #2 and #3 showed similar
variation tendency in comparison with those of video #1.

It is noted that statistics (i.e., MOTA, IDF1, IDR, IDP,
ID_SW) for video #2 are slightly lower than those of video
#1 and #3. The main reason was that image whitening phe-
nomenon was more obvious under rain and fog interferences.
Port personnel visibility and the corresponding features were
potentially polluted or corrupted in the image sequences
and thus object imaging boundaries were interweaved with
background related area. In sum, it can be safely concluded
that our proposed model obtained satisfied performance for
fulfilling port personnel trajectory extraction task under varied
rainy interferences.

C. Ablation Experiments

We have implemented additional ablation experiment on the
proposed TDM model in video #1 to further verify our model
performance. The first ablation experiment was conducted by
adding motion state estimation module. The second ablation
experiment was implemented by integrating deep association
metric module. Table III indicated that motion state estimation
(MES) and deep association metric module (DAM) can lead to
model performance. With the help of deep association metric
module, personal trajectory can be successfully associated
with neighboring frames while intrinsic personal imaging
features can be exploited. The statistical indicators suggested
that the DETR+MES+DAM (TSD) model outperformed the
DETR+MSE (TS) model with 15% performance improve-
ment. Moreover, the ID switch phenomenon was successfully
tackled by the TSD model. In comparison, the MOTP and
I DF1 obtained by our proposed TDM model were both larger
than 90% (which can be refereed to table II TDM). The
ablation results also verified our proposed model performance.

Authorized licensed use limited to: Shanghai Maritime University. Downloaded on February 17,2025 at 05:23:42 UTC from IEEE Xplore.  Restrictions apply. 



6578 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 7, JULY 2024

VI. CONCLUSION

Port surveillance videos provide informative spatiotemporal
data for supporting port management efficiency. Personnel
imaging trajectory extraction is of great practical significance
for ensuring port safety and security. Adverse weather con-
ditions (e.g., rain, fog) challenge spatial-temporal data (such
as personnel trajectory) extraction accuracy from port surveil-
lance videos. The study proposed an ensemble transformer and
memory-improved DeepSort deep learning model to extract
port personnel imaging trajectories under varied rainy interfer-
ences. The proposed framework collected global features from
the input port image sequences using the encoder-decoder
module of the transformer structure. In this way, we can
further obtain port personnel information (such as ID and
positions) via the object query and decoder module in the
transformer structure. The outliers of extracted port person-
nel positions were then further corrected via the memory
module of the DeepSort tracker in the proposed framework.
We verified proposed framework performance in three typical
rainy scene videos (raindrop, rain streak, and hybrid weather
condition of rain and fog) captured from port-like environ-
ments. The aggregated statistics of MOTA, IDF1, IDR, IDP,
ID_SW and fps were 92.37%, 96.14%, 95.31%, 96.99%, 0 and
11.91, which suggested that the proposed framework obtained
satisfied performance.

The following directions can be expanded to further enhance
model applicability in future. First, port personnel movement
status in three videos were homomorphic, and we can further
verify model performance under additional personnel motion
patterns. Second, the people density in the collected port-like
videos were not large, and port scenario verification under
large density scenario deserves our further attentions. Last
but not least, we further evaluate model performance under
maritime environments (e.g., ship trajectory extraction under
adverse weather interferences).
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