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Abstract—Short-term traffic flow prediction plays a key role of 

Intelligent Transportation System (ITS), which supports traffic 

planning, traffic management and control, roadway safety 

evaluation, energy consumption estimation, etc. The widely 

deployed traffic sensors provide us numerous and continuous 

traffic flow data, which may contain outlier samples due to 

expected sensor failures. The primary objective of the study was 

to evaluate the use of various smoothing models for cleaning 

anomaly in traffic flow data, which were further processed to 

predict short term traffic flow evolution with artificial neural 

network. The wavelet filter, moving average model, and 

Butterworth filter were carefully tested to smooth the collected 

loop detector data. Then, the artificial neural network was 

introduced to predict traffic flow at different time spans, which 

were quantitatively analyzed with commonly-used evaluation 

metrics. The findings of the study provide us efficient and 

accurate denoising approaches for short term traffic flow 

prediction. 

 
Index Terms—traffic flow prediction, artificial neural network, 

data denoising, Butterworth filter.  

 

I. INTRODUCTION 

he rapid development of urbanization has intensified gap 

between huge traffic demand and traffic facility shortage, 

which results in serious traffic problems (e.g., traffic 

congestion, traffic accident). Traffic flow prediction provides 

crucial information for microscopic and macroscopic traffic 

state estimation, which attracts increasing interest in the 

transportation research community. Currently, various traffic 

flow prediction models have been proposed which show 

numerous successes (i.e., high accuracy). The traffic prediction 

models comprise of mathematic based and machine learning 

supported frameworks. More specifically, traditional 
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mathematic models mainly employ statistical and calculus 

relevant methods to fulfill the traffic flow prediction task. The 

commonly used models involve exponential smooth [1, 2], 

Kalman filter [3-6], autoregressive integrated moving average 

(ARIMA) [7-10], etc. Note that traffic flow prediction accuracy 

is heavily relied on the raw traffic flow data quality. Thus, 

statistical based traffic flow prediction frameworks may 

contain unexpected anomalies without our data quality control 

procedure.  

The machine learning based methods can correct out potential 

traffic flow data noises due to the intrinsic advantage of 

reasoning capability. Previous studies employ support vector 

machine (SVM) [11-13], back propagation (BP) neural 

networks [14, 15] and fuzzy neural networks [16, 17] to extract 

embedded traffic flow patterns, and thus the noisy data samples 

are corrected in an automatic manner. More specifically, the 

anomaly outliers will be replaced with smoothed samples via 

nonlinear functions. Tang et al., proposed an improved Markov 

Chain framework to estimate traffic flow data series 

considering spatial-temporal correlation links [18]. Lv et al., 

proposed a stacked autoencoder model to learn distinct features 

form traffic flow data, which is the trial of employing deep 

learning model to tackle the traffic flow prediction task [19]. 

Hosseini introduced a convolutional neural network based 

traffic flow model to prediction traffic flow volume with a 

time-space diagram [20]. The machine learning based traffic 

flow prediction has become a hot topic due to the advantage of 

high accuracy, less human-being involvement, etc. [21-27] 

Previous studies suggested that prediction accuracy may be 

deteriorated due to noises existed in the raw traffic flow data, 

and many studies have been conducted to obtain the noise-free 

data [28, 29]. Peng et al., proposed a hybrid framework to 

predict short term traffic flow data via artificial neural network 

and genetic algorithm [30]. The experimental results indicated 

that the prediction performance of the proposed model is better 

than the ensemble empirical model decomposition based 

prediction models. Sun et al., developed a two-layer Fourier 

transform based traffic flow prediction framework, which was 

further tested on England Highway data [31]. Habtemichael et 

al., proposed a non- parametric model for the purpose of 

short-term traffic forecasting, which was implemented by 

identifying traffic patterns from big transportation data with an 

improved K-nearest neighbor (KNN) algorithm [32]. Xia et al., 

proposed a spatial-temporal weighted KNN model with a 

general purpose MapReduce framework to fulfill the accurate 

and efficient short-term traffic flow prediction [33].  Zhang et 
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al., proposed a deep autoencoder neural network to forecast 

traffic congestion by extracting traffic parameters with 

computer vision techniques [34]. Similar studies can be found 

in [35-42]. In sum, data denoising procedure can significantly 

benefit traffic flow prediction accuracy.   

Previous studies suggested that short term traffic flow 

prediction can be implemented in the time spans of 1 min, 2 

min and 10 min [43, 44]. Following the rule, we implemented 

the traffic flow prediction task at same interval. Our primary 

contributions were summarized as follows: (1) we denoised the 

raw traffic flow data at different time intervals (i.e., 1 min, 2 

min and 10 min) with various smoothing algorithms. More 

specifically, the data denoising procedure was implemented 

with wavelet filter (with different bases), moving average 

model (at different window sizes) and the Butterworth filter; (2) 

we forecasted the traffic flow variation tendency (at different 

time resolutions) with the artificial neural network (ANN); (3) 

we quantified the traffic flow prediction performance on the 

empirical traffic flow data (collected from three neighboring 

loop detectors on weekdays). The remainder of the paper is 

organized as follows. Section II introduces different denoising 

methods and ANN model in detail. Section III describes the 

data source, evaluation metrics and traffic flow data denoising 

procedure and prediction accuracy. Section IV briefly 

concludes the study and future work.  

II. METHODOLOGY 

The traffic flow data collected from on-spot sensors may be 

contaminated by various outliers, and data pre-processing is 

essential before implementing traffic flow analysis task. We 

employ three popular data-denoising models for the purpose of 

obtaining noise-free traffic flow data, which are illustrated in 

detail in the following sections.  

A. Wavelet Filter 

Wavelet filter (WL) decomposes traffic flow data into 

several subsets, which are termed as scaling and wavelet 

subsets. The wavelet relevant subsets contain details and noises 

in the original traffic flow data, and the latter are supposed to be 

suppressed during the data denoising procedure [45, 46]. Note 

that both of the wavelet basis and level of decomposition are 

very important for obtaining satisfied smoothing results (i.e., 

appropriate scaling and wavelet subsets). Our previous study 

suggested that wavelet basis plays a more important role in 

suppressing the traffic flow-like data [27-29]. Following the 

rule, we implement traffic flow denoising task with the WL 

filter performance under varied wavelet bases, and more details 

can be found in the experimental section. The original traffic 

flow data series can be formulated as Eq. (1). The WL model 

implements the traffic flow data denoising procedure via the 

following three steps:   

Step 1: data decomposition; The raw traffic flow data is 

decomposed into several data series with the help of wavelet 

basis at a pre-defined decomposition level N. Note that the WL 

decomposition level may impose negative / positive effect on 

the model denoising performance.  

Step 2: set appropriate thresholds for varied detail 

coefficients; The rule includes the hard and soft thresholding 

manners, which are shown in Eq. (2) and (3), respectively. We 

suppress the noisy data subsets while keeping the detail and 

noise-free subset by thresholding out the outliers.  

Step 3: data reconstruction. We obtain the denoised traffic 

flow data by accumulating the wavelet coefficients subsets 

based on the previous step output. The efficient wavelet bases 

(including daubechies (db), coiflets (coif), symlets (sym) and 

haar) will be implemented in our study.  

xi = yi + εi, i = 1,2, ⋯ , n        (1)   

β̂ = {
β, |β| ≥ T 

0, |β| < T
            (2) 

β̂ = {
sgn(β)(|β| − T), |β| ≥ T 

0,   |β| < T
      (3) 

where xi is the empirical data sample obtained from the spot 

loop sensor, yi is the noise-free data sample and εi is the noise 

for the current data sample xi The parameter n is the volume 

for the traffic flow data series. The parameter β  is wavelet 

coefficient, and β̂ is estimated wavelet coefficient. The symbol 

is signum function and T is threshold.  

B. Moving Average 

Moving average (MA) is a traditional statistical method for 

analyzing time series data variation tendency, which can be 

used for data prediction and smoothing [47]. The MA model 

removes the anomaly data in the manner of averaging 

neighboring samples, which involves two types of smoothing 

logics. More specifically, the first type is symmetric moving 

average, which generates the target data by accumulating the 

forward and backward data samples. Note that each 

neighboring data sample shares same weight during averaging 

procedure. The second type is named as an asymmetric moving 

average, with each sample is assigned with different weights. 

The symmetric and asymmetric moving average models are 

calculated as follows: 

{
yi = xi, i ≤  

m−1

2
 or i ≥ n − 

m−1

2

yi =
1

m
(α

i−
m−1

2
x

i−
m−1

2
+ ⋯ + α

i+
m−1

2
x

i+
m−1

2
) ,

m−1

2
< i <  n − 

m−1

2

   (4) 

{
yi = xi, i ≤ m

yi =
1

m
(αi−m+1xi−m+1 + αi−m+1xi−m+1 + ⋯ + αixi), i > m

     (5) 

where parameter n  is the total number of traffic flow data 

sample, αi is the weight for the ith sample. The parameter m is 

the moving window size for the MA method, which should be 

an odd number in symmetric MA model. The MA smoothing 

performance is heavily relied on the window size. More 

specifically, larger window size may obtain over-smoothed 

traffic flow data (i.e., the data details may be wrongly 

suppressed), while smaller window size may fail to completely 

remove outliers in the traffic flow data series. In our study, we 

employ the simple symmetric moving average method (i.e., 

αi = 1) to denoise the initial traffic flow data.  

The window size plays a crucial role for the MA model 

smoothing performance, and the parameter is set to typical 

values (i.e., 3, 5, 7, 9) to obtain holistic data denoising results. 
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Note that the symbol MA3 represents the moving average 

model with window size setting to 3. Following the rule, we 

employ the symbol MA5, MA7, MA9 to demonstrate window 

size setting to 5, 7 and 9 for the moving average model. 

C. Butterworth Filter 

Butterworth filter (abbreviated as BW) is first designed to 

suppress signal noises in the manner of obtaining maximal flat 

frequency response. Given a sampling frequency for the traffic 

flow data, the BW model accomplishes data denoising 

procedure by adjusting fluctuation magnitude. More 

specifically, the raw data samples with obvious abnormal 

oscillations will be replaced with smoothed data. The 

transformation function of BW model is shown in Eq. (6). 

H(z) =
a0+a1z−1+⋯+akz−k

b0+b1z−1+⋯+bkz−k        (6) 

where ai , bi(i = 1,2, ⋯ , k)  are the coefficient set which 

determine the optimal response of BW model, and k presents 

the filter order. For the purpose of obtaining optimal traffic 

flow data denoising performance, we need to carefully 

determine the parameters cutoff frequency fc and lowpass filter 

order kth. Note that larger fc will produce flatter traffic flow 

data series, which may remove data details, and vice versa.  

 

D. Artificial Neural Network 

By obtaining noise-free traffic flow data, the Artificial 

neural network (ANN) is then introduced to predict traffic flow 

variation tendency in near future. The ANN involves static and 

dynamic neural network, which is identified via the memory 

storage mode. More specifically, the neural network is 

considered as a static neural network when the network does 

not contain memory (e.g., BP neural network). Moreover, the 

network involving memory storage is reckoned as dynamic 

neural network, such as Hopfield neural network, nonlinear 

autoregressive with external input (NARX) neural network. We 

employ the NARX model to predict traffic flow at different 

time span. The NARX network predicts traffic flow data with 

the input of data at previous timestamp and feedback. The 

formula for the NARX neural network is represented as follows 

[48-50]:  

ŷ(t + 1) = f (y(t), ⋯ , y(t − ky), x(t), ⋯ , x(t − kx))  (7) 

where parameters x(t) is input of previous data sample the 

NARX neural network at time t, and y(t) is feedback factor at 

corresponding time stamp. The kx  and ky  are the input and 

output memory orders, respectively, and f(∙)  is nonlinear 

function. The symbol ŷ(t + 1) is output for the NARX neural 

network at time t + 1. The NARX neural network can obtain 

real-time traffic flow prediction performance due to the 

simplified model structure, which mainly contains input layer, 

hidden layer and the output layer (see Fig. 1). The NARX input 

layer contains both of the training and output traffic flow 

samples, which are denoted as x(t) and y(t), respectively. The 

hidden layer learns intrinsic traffic flow patterns from the input 

traffic flow samples. The parameters w and b (shown in the 

hidden and output layers in the NARX network) are the weight 

and threshold, respectively. In addition, the parameters s and r 

represent the delay orders for the x(t) and y(t), respectively.  

E. Evaluation metrics 

It is noted that the Root mean square error (RMSE) is 

widely used to measure the bias between the denoised and raw 

data, and the mean absolute error (MAE) can avoid 

disadvantage of data-deviation cancelation. More specifically, 

both of the Root mean square error (RMSE) and mean absolute 

error (MAE) can perfectly measure the bias between the 

denoised and ground-truth traffic data. In that manner, the 

statistics of RMSE and MAE are employed to quantify the 

traffic flow prediction accuracy. In addition, the mean absolute 

percentage error (MAPE) and signal-noise ratio (SNR) are used 

to evaluate the traffic flow data noise removal performance. 

The RMSE, MAE, MAPE and SNR are calculated as follows: 

RMSE = √
1

n
∑ (ŷi − yi)

2 n
i=1        (8) 

MAE =
1

n
∑ |ŷi − yi|

n
i=1         (9) 

MPAE =
1

n
∑

|ŷi−yi|

yi

n
i=1         (10) 

SNR = 10log10 ∑
yi

2

(ŷi−yi)2
n
i=1        (11) 

where n is the volume of the traffic flow sample, and yi is the 

ith sample of the raw data series, and ŷi is counterpart of the 

ground truth data.  

 
Fig. 1. Structural diagram of the NARX neural network 

 

III. EXPERIMENTS 

We aim to verify traffic flow prediction performance via 

conventional ANN model (NARX neural network is used in our 

study) and hybrid ANN framework (i.e., combining various 

data denoising models before implementing the ANN 

prediction model). The delay orders in the ANN are both set to 

2, and the number of hidden layer node is set to 5. The traffic 

flow prediction experiments were implemented on Windows 10 

with Intel Core i7-8750H CPU @ 2.20GHz processor and 

RAM is 8G. The GPU version is NVIDA GeForce GTX 1050 

Ti.  
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A.  Datasets 

We sampled the raw empirical traffic flow data from three 

loop deductive sensors (the sensor IDs are #5802, #5805 and 

#5808), which were deployed on the Interstate 494 in the 

Minnesota State, United States. The traffic flow data were 

collected from three consecutive weekdays from January 6, 

2016 to January 8, 2016 for the purpose of avoiding holiday 

traffic variation interference. Moreover, we aggregated the raw 

traffic flow sensing data into different time interval (i.e., 1 min, 

2 min and 10 min) [28]. More specifically, we collected 4320 

samples at 1 min interval, while 2160 and 432 samples for 2 

and 10 min interval, respectively. The traffic flow samples are 

considered as a two-dimension data series, which include time 

stamp and traffic flow volume.  

B.  Data Denoising Performance Analysis 

The observed traffic flow data quality is crucial for traffic 

flow prediction accuracy, and thus data quality control is 

essential to smooth the noisy traffic flow data. To 

comprehensively compare varied denoising framework 

performance, we employ the WL model with different wavelet 

bases, MA and BW model to pre-process the raw data. The 

RMSE, MAE and SNR statistics help us analyze varied 

smoothing methods in a quantitative manner. Overall, there is 

no significant difference between varied smoothing models on 

the same time span data samples (e.g., smoothing performance 

on 1 min (2 min and 10 min) traffic flow data is quite similar 

among varied denoising models). Taken traffic flow denoising 

results on the 1 min data from sensor ID # 5802 as an example 

(see table 1), the WL (db) model obtains optimal noise removal 

performance in comparison with other wavelet bases denoising 

results (i.e., optimal RMSE, MAE and SNR for the wavelet 

models are 3.1197, 2.3615 and 14.4957).  

We have tested the BW filter performance under varied 

parameter settings, which showed similar results. In that 

manner, we set the default cut-off frequency to 0.2. The BW 

model showed slightly-worse smoothing performance 

compared to those of the counterparts considering that the 

RMSE, MAE and SNR indicators are 3.6334, 2.7035 and 

13.1714. The main reason is that the BW model considered the 

significant data oscillations as outliers, and thus some traffic 

flow details (caused by special events, etc.) may be wrongly 

suppressed. The MA models obtain better smoothing results in 

comparison with the WL and BW models. More specifically, 

the minimal RMSE and MAE for the MA model are 2.7257 and 

2.0466, respectively, and maximal SNR is 15.6683, which are 

obtained when window size is set to 3. The smoothing results 

for 1 min data at sensor ID #5805 and #5808 (see table 2 and 3) 

show similar performance as those of sensor ID #5802.  

 

Table 1. Statistical indices of different denoising methods for traffic data with sensor ID #5802 

 
1 min  2 min  10 min 

RMSE MAE SNR  RMSE MAE SNR  RMSE MAE SNR 

WL (db) 3.1197 2.3615 14.4957  4.3462 3.3166 17.5480  11.5172 8.8698 22.9919 

WL (coif) 3.1477 2.3713 14.4178  4.4297 3.3803 17.3828  12.3668 9.4308 22.3737 

WL (sym) 3.1487 2.3738 14.4152  4.3714 3.3349 17.4979  12.1911 9.7086 22.4980 

WL (haar) 3.3023 2.4997 14.0014  4.2192 3.2759 17.8057  13.7382 10.9795 21.4603 

MA3 2.7257 2.0466 15.6683  3.7924 2.8335 18.7320  8.9116 6.6775 25.2197 

MA5 2.9653 2.2090 14.9363  4.0690 3.0519 18.1206  11.0291 7.9880 23.3681 

MA7 3.0457 2.2662 14.7040  4.2332 3.1401 17.7770  12.2359 8.7249 22.4662 

MA9 3.0837 2.2963 14.5964  4.3374 3.2226 17.5658  13.2333 9.3920 21.7855 

BW 3.6334 2.7035 13.1714  5.5929 4.1623 15.3576  13.5891 10.0383 21.5551 

 

Table 2. Statistical indices of different denoising methods for traffic data with sensor ID #5805 

 
1 min  2 min  10 min 

RMSE MAE SNR  RMSE MAE SNR  RMSE MAE SNR 

WL (db) 3.2787 2.4999 14.0359  4.5856 3.5057 17.0482  12.1269 9.3004 22.5019 

WL (coif) 3.2487 2.4821 14.1160  4.6324 3.5202 16.9600  12.9141 10.0177 21.9556 

WL (sym) 3.2504 2.4705 14.1114  4.5609 3.5036 17.0952  12.5328 9.8389 22.2159 

WL (haar) 3.4114 2.6023 13.6914  4.9285 3.8039 16.4219  15.5079 12.6247 20.3658 

MA3 2.8223 2.1122 15.3379  3.9123 2.8997 18.4275  11.3272 7.7840 23.0944 

MA5 3.0786 2.2920 14.5831  4.2551 3.1713 17.6980  13.2669 9.1231 21.7215 

MA7 3.1509 2.3448 14.3813  4.4631 3.2928 17.2834  14.0232 9.7688 21.2399 

MA9 3.1895 2.3738 14.2757  4.6494 3.4238 16.9282  15.0454 10.5445 20.6288 

BW 3.8839 2.8524 12.5646  6.1754 4.4655 14.4629  16.1489 11.1579 20.0140 

 

Table 3. Statistical indices of different denoising methods for traffic data with sensor ID #5808 
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1 min  2 min  10 min 

RMSE MAE SNR  RMSE MAE SNR  RMSE MAE SNR 

WL (db) 3.0526 2.3477 13.9810  4.3230 3.3294 16.8835  11.4264 8.8416 22.3391 

WL (coif) 3.0974 2.3720 13.8543  4.4901 3.4540 16.5543  11.1273 8.6987 22.5695 

WL (sym) 3.0701 2.3528 13.9312  4.4160 3.4167 16.6988  11.4420 8.9656 22.3272 

WL (haar) 3.2411 2.4699 13.4603  4.7457 3.6396 16.0734  12.4805 10.0452 21.5727 

MA3 2.6234 1.9931 15.2968  3.7599 2.8343 18.0957  8.5570 6.6219 24.8509 

MA5 2.8822 2.1736 14.4797  4.0716 3.0727 17.4041  10.4236 7.7759 23.1369 

MA7 2.9764 2.2367 14.2004  4.1769 3.1588 17.1823  11.3132 8.3624 22.4256 

MA9 3.0161 2.2738 14.0854  4.2715 3.2302 16.9876  12.2373 8.9259 21.7436 

BW 3.5133 2.6556 12.7599  5.4060 4.0582 14.9418  12.7094 9.4452 21.4148 

The smoothing performance on the 2 min and 10 min data 

series show a decreasing tendency by contrast with the 1 min 

traffic flow data. For instance, the minimal RMSE for the 2 min 

data (see table 1) is 3.7924 (obtained by MA3 model), minimal 

MAE is 2.8335 and maximal SNR is 18.7320. Though the 

maximal SNR is larger than that of 1 min data, the RMSE and 

MAE for the 2 min traffic flow data are both larger than the 

counterparts of 1 min. The 10-min RMSE and MAE values are 

three-fold higher than those of the 1 min, which indicates that 

traffic flow details in larger time span can be easily suppressed 

by the smoothing models.  

It is noted that the WL(sym) model obtained better 

smoothing performance compared to the wavelet counterparts, 

which can be found in the traffic flow denoising performance at 

different time intervals (e.g., 1 min, 2 min and 10 min 

prediction results shown in table 2 and 3, respectively). Besides, 

the MA3 model obtained the optimal smoothing performance 

in the moving average families. More specifically, the average 

RMSE, MAE and SNR for sensor ID # 5805 (i.e., aggregating 

the 1 min, 2 min and 10 min data shown in table 2) are 6.0206, 

4.2653 and 18.9533, and the counterparts for the sensor ID # 

5808 are 4.9801, 3.8164 and 19.4145 (i.e., aggregating the 1 

min, 2 min and 10 min denoising results in table 3). The traffic 

flow denoising performance obtained by the Butterworth model 

is significantly worse than the counterparts of the WA and the 

MA models (see the last row of the table 2 and 3, respectively). 

To further examine denoising effects by the various models, 

we looked smoothing details of how each of the model address 

the outliers in the original traffic flow volume data. It is 

observed that the WL, MA and BW can successfully smooth 

the anomaly oscillations without discarding data details. Taken 

the denoising effect on data samples with sensor ID #5802 at 1 

min scale as an example, the variation tendency was 

successfully shown in the denoised traffic flow data in each 

subplot in Fig.2. After carefully checking the denoising details 

of WL and BW, we found that several normal data oscillations 

were suppressed. Different window sizes used in the MA 

models (from 3 to 9) were tested, and the smoothing results 

suggested that the best performance was obtained when the 

window size was set to 3. The Fig. 3 and 4 showed similar 

smoothing result for the traffic flow data at sensor ID #5802 

under time scales 2 min and 10 min. In sum, various smoothing 

models showed similar result on suppressing the data outliers, 

and the MA3 model obtained slightly better performance in 

comparison with other smoothing methods.  

 

 
(a) denoising effect of WL (db) 

 
(b) denoising effect of WL (coif) 
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(c) denoising effect of WL (sym) 

 
(d) denoising effect of WL (haar) 

 
(e) denoising effect of MA3 

 
(f) denoising effect of MA5 

 
(g) denoising effect of MA7 

 
(h) denoising effect of MA9 
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(i) denoising effect of BW 

Fig. 2. Denoising effect of traffic flow data with sensor ID # 5802 under 1 min scale (note that time axis is the traffic flow data sample sequence) 

 

 
(a) denoising effect of WL (db) 

 
(b) denoising effect of WL (coif) 

 
(c) denoising effect of WL (sym) 

 
(d) denoising effect of WL (haar) 

 
(e) denoising effect of MA3 

 
(f) denoising effect of MA5 

 
(g) denoising effect of MA7 

 
(h) denoising effect of MA9 

 
(i) denoising effect of BW 

Fig.3. Denoising effect of traffic flow data with sensor ID # 5802 under 2 min scale 
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(a) denoising effect of WL (db) 

 
(b) denoising effect of WL (coif) 

 
(c) denoising effect of WL (sym) 

 
(d) denoising effect of WL (haar) 

 
(e) denoising effect of MA3 

 
(f) denoising effect of MA5 

 
(g) denoising effect of MA7 

 
(h) denoising effect of MA9 

 
(i) denoising effect of BW 

Fig.4. Denoising effect of traffic flow data with sensor ID # 5802 under 10 min scale 

 

C. Prediction Performance Analysis 

After removing anomalies in traffic flow data, we employ the 

ANN model to predict traffic flow volume at different time 

intervals. Note that 70% samples were selected as the training 

dataset, and the remaining 30% as the validation dataset. It is 

observed that the conventional ANN model obtains the largest 

error in comparison with hybrid ANN models (with data 

smoothing procedure). From the perspective of RMSE for 1 

min (see Table 4), the conventional ANN obtained RMSE is 

3.8977, which is obviously larger than the counterparts of 

smooth-framework based ANN models. We observed that the 

hybrid ANN model with BW denoising method showed better 

prediction accuracy (i.e., the RMSE, MAE and MAPE are 

0.2755, 0.2094 and 0.0241) in comparison with other hybrid 

ANN models. The statistic indicators for 2 min and 10 min 

prediction accuracy showed quite similar results. The main 

reason is that samples near outliers (e.g., peak, spike, dips) were 

better smoothed into by the BW model, which benefits traffic 

flow prediction. Moreover, the prediction accuracy for 2 min 
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data is lower than that of the 1 min, while 10 min is worse than 

the 2 min (see Table 5 and 6), which indicates that larger time 

span can impose negative effect on traffic flow prediction. 

We found that the prediction results (RMSE, MAE and 

MAPE) become worse when data sampling with a larger time 

interval (show Fig. 5). The main reason can be ascribed to 

randomness interference when aggregating traffic flow data 

into larger time interval. More specifically, traffic flow data in 

10 min scale may contain unexpected oscillations which cannot 

be fully exploited by prediction models. Additionally, we found 

that the hybrid ANN models with WL models outperforms than 

that of MA-relevant models. The reason is that traffic flow data 

at different time scales obtains similar variation tendency, 

which can be better fitted by the WL models. Thus, the 

WL-based hybrid ANN models can extract more intrinsic 

traffic flow data pattern, and outputs better prediction results. 

Fig. 5 indicates that hybrid ANN combining with MA models 

showed better performance when the window size applied to 

MA models becomes larger. 

 

Table 4. Prediction accuracy measurements for traffic data with sensor ID #5802 

 
1 min  2 min  10 min 

RMSE MAE MAPE  RMSE MAE MAPE  RMSE MAE MAPE 

WL (db)+ANN 0.8549 0.2624 0.0177  1.1482 0.5311 0.0198  7.3590 3.8150 0.0367 

WL (coif)+ANN 0.5132 0.2007 0.0131  0.9060 0.4766 0.0185  4.6657 2.4198 0.0166 

WL (sym)+ANN 0.8798 0.3148 0.0444  1.0833 0.5227 0.0157  4.7877 2.7885 0.0186 

WL (haar)+ANN 0.5468 0.1502 0.0106  1.8045 0.8499 0.0276  9.2959 6.4195 0.0520 

MA3+ANN 1.5419 1.1595 0.1536  2.2372 1.6704 0.0993  7.8253 6.0409 0.0568 

MA5+ANN 0.9560 0.7099 0.0842  1.3913 1.0360 0.0592  4.6388 3.7540 0.0414 

MA7+ANN 0.6629 0.4897 0.0596  1.0053 0.7480 0.0403  3.8578 2.8589 0.0362 

MA9+ANN 0.5018 0.3734 0.0444  0.8638 0.6241 0.0392  3.2269 2.2481 0.0274 

BW+ANN 0.2755 0.2094 0.0241  0.4244 0.3200 0.0190  2.3824 1.8221 0.0212 

ANN 3.8977 2.9065 0.2927  5.6794 4.2151 0.2472  18.1861 13.4901 0.1231 

 

Table 5. Prediction accuracy measurements for traffic data with sensor ID #5805 

 
1 min  2 min  10 min 

RMSE MAE MAPE  RMSE MAE MAPE  RMSE MAE MAPE 

WL (db)+ANN 0.5461 0.2190 0.0152  1.2585 0.5755 0.0223  10.1114 5.5282 0.0329 

WL (coif)+ANN 0.7022 0.2721 0.0180  1.3270 0.5053 0.0165  11.2414 4.2668 0.0294 

WL (sym)+ANN 0.5847 0.2351 0.0147  1.3483 0.6012 0.0165  10.7525 7.0071 0.0394 

WL (haar)+ANN 0.7078 0.2103 0.0166  1.8903 0.5708 0.0226  16.0846 7.9766 0.0724 

MA3+ANN 1.5923 1.1824 0.1366  2.3342 1.7315 0.1059  9.0346 6.6456 0.0792 

MA5+ANN 0.9457 0.7127 0.0815  1.4471 1.0574 0.0604  5.3180 4.0465 0.0405 

MA7+ANN 0.7375 0.5433 0.0615  0.9842 0.7354 0.0444  4.7638 3.3002 0.0335 

MA9+ANN 0.5855 0.4362 0.0483  0.8449 0.6271 0.0373  3.1797 2.5027 0.0369 

BW+ANN 0.2871 0.2126 0.0238  0.5035 0.3554 0.0192  2.3249 1.8023 0.0249 

ANN 4.0356 3.0493 0.3164  5.9500 4.5087 0.2594  23.5575 16.8514 0.1338 

 

Table 6. Prediction accuracy measurements for traffic data with sensor ID #5808 

 
1 min  2 min  10 min 

RMSE MAE MAPE  RMSE MAE MAPE  RMSE MAE MAPE 

WL (db)+ANN 0.5597 0.2161 0.0159  1.0847 0.5285 0.0232  6.4790 3.4729 0.0277 

WL (coif)+ANN 0.3812 0.1579 0.0113  0.7469 0.3593 0.0118  4.5368 2.6163 0.0262 

WL (sym)+ANN 0.5790 0.2058 0.0144  0.8552 0.4340 0.0183  5.1320 3.0364 0.0221 

WL (haar)+ANN 0.3914 0.1203 0.0128  1.2806 0.3486 0.0146  12.4921 6.1300 0.0626 

MA3+ANN 1.5114 1.1320 0.1493  2.0613 1.5500 0.0947  6.9239 5.3064 0.0636 

MA5+ANN 0.8642 0.6538 0.0829  1.3544 1.0294 0.0578  3.7080 2.8675 0.0407 

MA7+ANN 0.6576 0.4963 0.0585  1.0165 0.7525 0.0428  3.6047 2.7541 0.0406 

MA9+ANN 0.5125 0.3756 0.0457  0.7798 0.5786 0.0344  3.0184 2.3250 0.0297 

BW+ANN 0.2716 0.2071 0.0252  0.3985 0.3031 0.0197  2.4588 1.8147 0.0215 

ANN 3.7075 2.7826 0.3369  5.3794 4.1256 0.2627  18.6181 13.4565 0.1485 
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(a) RMSE distributions 

 
(b) MAE distributions 

 
(c) MAPE distributions 

Fig.5 Prediction accuracy distributions with time scales for sensor ID# 5802 

 

IV. CONCLUSION 

Short term traffic flow data provides crucial on-spot traffic 

state information for traffic participants (e.g., drivers on 

roadways, traffic management officials), and thus obtaining 

accurate traffic flow data in advance attracts significant 

attentions in the traffic flow community. We proposed a novel 

framework for the purpose of accurately predicting short-term 

traffic flow (i.e., 1 min, 2 min and 10 min) from historical data. 

We firstly denoised the raw traffic flow data with popular 

smoothing models (WL, MA and BW). After that, the ANN 

model was introduced to forecast traffic flow based on the 

smoothed traffic flow data. We have evaluated the proposed 

model performance on the empirical traffic flow data collected 

from three loop sensors. The experimental results support the 

following conclusions: (1) traffic flow prediction accuracy 

obtained by hybrid ANN model combined with denoising 

methods is superior to that of the non-hybrid ANN model; (2) 

the MA based hybrid ANN models showed an increasing 

prediction accuracy when the window size becomes larger. In 

other words, larger window size used in the MA model can 

benefit prediction accuracy; (3) the hybrid ANN model 

combined with WL denoising methods are superior than the 

MA relevant counterpart when implementing the traffic flow 

prediction accuracy; (4) the Butterworth filter supported hybrid 

ANN model obtained better prediction accuracy compared to 

the counterparts. The study was implemented without 

considering environmental factor influence, which may affect 

the prediction error. We can expand our research by 

incorporating various external factors’ influence (e.g., roadway 

maintenance, adverse weather, unexpected sports event, etc.) in 

a quantitative manner. Besides, we can explore lightweight 

deep learning model performance to implement the short term 

traffic flow prediction task. Moreover, we can testify the WL 

filter smoothing performance at different decomposition levels 

for the purpose of obtaining more holistic comparison results.  
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